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Abstract  

Connection between critical habitats is an important consideration in efforts to restore native 

and socio-economically important fish species or control the spread of invasive species. 

However, differences in fish life history might influence the effectiveness of restoration and 

management actions. In addition, the strength of connection among spatially separate 

subpopulations could affect the response of the overall population to a local environmental 

change. In this study, we modelled the response of migratory fish populations with different 

homing rates, straying distances, and reproductive modes (iteroparity and semelparity) to 

changes in the carrying capacity of spawning/nursery grounds in a lake-stream system. 

Increasing the carrying capacity of one spawning/nursery ground could increase the abundance 

of the local subpopulation and overall population, but both short-term (i.e., abundance change 

in the first 20 years) and long-term (i.e., equilibrium abundance) responses varied with life 

history traits. Furthermore, the abundance of some subpopulations might decrease because of 

the movement of straying adults toward more productive spawning/nursery grounds. In general, 

straying distance influenced the short-term response and spatial pattern of the population while 

homing rate influenced the equilibrium abundance. This study revealed the effect of life history 

traits on population response to restoration actions, which may be crucial for managers in charge 

of multi-species management, such as enhancing native fishes while controlling invasive species. 

 

Keywords: migratory fish, population dynamics, barrier removal, life history, homing 

behavior, straying distance  
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Introduction 

The connection between different habitats plays a key role in population persistence, especially 

for migratory species (Wilcove and Wikelski 2008). Therefore, the construction or removal of 

anthropogenic barriers (e.g., dams and fences) to control invasive species and restore native 

species has been widely applied in natural resource management (Hermoso et al. 2015; 

McLaughlin et al. 2013). Barriers, such as dams and overhanging culverts, usually decrease the 

size of available spawning and nursery grounds for migratory species in riverine ecosystems. 

Throughout the Laurentian Great Lakes basin, more than 1 billion US dollars have been invested 

for barrier removal projects to restore the spawning migration of native species, while over 60 

barriers have been constructed or modified to suppress the reproduction of invasive sea lamprey 

(Petromyzon marinus; Lavis et al. 2003; Neeson et al. 2015). Barrier removal or modification 

projects are usually costly, time-consuming, and involve multiple objectives, such as 

management objectives for native species, invasive species, and other socio-economic interests 

(McKay et al. 2016; Moody et al. 2017; Zheng and Hobbs 2013). Therefore, it is critical to 

estimate how different species of interest (both native and invasive) respond to a given 

management action, such as barrier removal, before implementation (Jensen and Jones 2017; 

Kočovsky et al. 2009; Quiñones et al. 2015). 

 

The distribution of suitable habitats above a barrier for species of interest, derived from 

historical records, field surveys, and species distribution modelling, can provide an estimate of 

the effects of barriers on certain species. Habitat distribution data have been used to prioritize 

barrier removal projects based on the amount of quality habitat above a certain barrier (Branco 

et al. 2014; Kočovsky et al. 2009; Quiñones et al. 2015). Nevertheless, changes in the size of 

suitable habitat might not reflect the changes in population dynamics as species-specific 

characteristics could modulate population-level responses. Species with different life history 
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traits, such as migration season and timing, reproductive mode, homing rate and straying 

distance, might respond to the same size of habitat expansion/reduction differently (Pess et al. 

2014). For instance, species with low straying rates (e.g., striped bass, Morone saxitilis) may 

have a lower tendency to colonize new habitats, thus, benefiting less from barrier removal 

compared with species with higher straying rates (e.g., pink salmon, Oncorhynchus gorbuscha) 

in the first few years after barrier removal (Pess et al. 2014). 

 

The most direct way to assess the response of species to barrier removal is to monitor the system 

before and after the removal (Doyle et al. 2005; Gardner et al. 2013; Shaffer et al. 2017). These 

types of studies, which typically include monitoring for five years or less after barrier removal, 

suggest that many fish species can occupy newly-opened habitats after removing a barrier 

(Foley et al. 2017a; Hogg et al. 2015; Pess et al. 2014). However, the long-term trajectories of 

fish population dynamics after barrier removal are largely unknown because population 

recovery and recolonization may take decades or centuries, which is beyond the scope of most 

monitoring plans (Foley et al. 2017a; Pess et al. 2014). Short-term population dynamics may be 

different from the long-term trajectories (Foley et al. 2017a; Huang and Lewis 2015). In addition, 

a study on one local subpopulation might neglect the effect on other neighbouring 

subpopulations within the migratory network (Taylor and Norris 2010), which could be crucial 

if each subpopulation is managed by different authorities. 

 

Population models, which can predict population dynamics under the impact of barriers (or 

barrier removal) have been built for several well-studied migratory species, such as sea lamprey 

(Jensen and Jones 2017), walleye (Sander vitreus, Cheng et al. 2006; Zheng and Hobbs 2013), 

and Atlantic salmon (Salmo salar, Nieland et al. 2015). Most of these models are fine-tuned for 

the complexity and parameters specific to their intended species, which limits their application 
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to data-poor species from the same system and their generality across species. A simple and 

flexible population model that can be applied to species with different life history traits (as 

discussed in Pess et al. 2014) might be more beneficial for managers in charge of multi-species 

management. 

 

In this study, we developed a simple population model with a migration component (i.e., 

separated spawning/nursery and feeding grounds) to simulate population dynamics after barrier 

removal or construction (i.e., increasing or reducing the carrying capacity in the 

spawning/nursery ground of a subpopulation) for multiple local subpopulations. The main goal 

of this study was to compare the short- and long-term responses of populations with different 

homing rates, straying distances, and reproductive modes (iteroparity and semelparity). The 

spatial structure of this model was built to reveal different dynamics among local subpopulations 

when incorporating the degree of natal homing and straying distance of adult fish. 

 

Population model 

Our population model is derived from a delay-difference model that simulates population 

abundance over time, based on the number of survivors and recruitment from the previous year 

(Deriso 1980; Lin et al. 2018). To test the influence of different levels of homing rate and 

straying distance, we developed a closed system (similar to a stream-lake system for adfluvial 

fish populations that feed in the same lake but spawn in different streams, such as 

potamodromous salmonids, trouts, cyprinids, catfish, pikes, and sturgeons) with eight 

subpopulations, in which most individuals in a subpopulation use one spawning/nursery ground 

(i.e., individuals in subpopulation j mainly migrate to spawning/nursery ground j, j = 1 – 8, Fig. 

1a). The abundance of subpopulation j at time t + 1 (Nj(t+1)) is the sum of post-spawners, Pjt, and 



6 
 

new recruits, Rj(t-lag) (with a time lag that represents the age of maturity), from spawning/nursery 

ground j (Fig. 1b and equation 1). 

𝑁𝑁𝑗𝑗(𝑡𝑡+1) =  𝑃𝑃𝑗𝑗𝑗𝑗 +  𝑅𝑅𝑗𝑗(𝑡𝑡−𝑙𝑙𝑙𝑙𝑙𝑙)                                                  (1) 

The number of post-spawners, Pjt, is  

𝑃𝑃𝑗𝑗𝑗𝑗 = �𝑆𝑆𝑗𝑗𝑗𝑗 +  𝑆𝑆′𝑡𝑡�𝑠𝑠𝑎𝑎                                                        (2) 

, where Sjt is the number of spawners from subpopulation j, S’t is the number of straying adults 

from neighbouring subpopulations that are within a given straying distance (D, see below), and 

sa is the survivorship after spawning. The number of spawners from each subpopulation is the 

product of subpopulation abundance at time t, Njt, homing rate, h (0 ≤ h ≤ 1), and the 

survivorship before spawning, sb  

𝑆𝑆𝑗𝑗𝑗𝑗 =  𝑁𝑁𝑗𝑗𝑗𝑗ℎ𝑠𝑠𝑏𝑏                                                             (3).  

The number of spawners immigrating from other subpopulations (S’t) is calculated based on 

straying distance, the population abundance in neighbouring subpopulations, Nit (i ≠ j, i ∊ D), 

the survivorship before spawning, sb, homing rate, h, and the relative size of spawning ground 

j’s carrying capacity among all spawning grounds within the straying distance, D. 

𝑆𝑆′𝑡𝑡 =  (∑ 𝑁𝑁𝑖𝑖𝑖𝑖(1 − ℎ)𝑠𝑠𝑏𝑏
𝑛𝑛
𝑖𝑖=1 ) 𝑘𝑘𝑗𝑗 𝐾𝐾𝐷𝐷−𝑖𝑖⁄                                            (4) 

In equation (4), D represents a set of subpopulations within a given straying distance (n is the 

number of subpopulations except subpopulation j within set D, details in next section), kj is the 

carrying capacity in subpopulation j, and KD-i represents the sum of all carrying capacities within 

set D but without the carrying capacity in spawning/nursery ground i. 

The Ricker function (Ricker 1954) was used to model new recruitment from spawning adults, 

𝑅𝑅𝑗𝑗𝑗𝑗 = �𝑆𝑆𝑗𝑗𝑗𝑗 + 𝑆𝑆′𝑡𝑡�{𝑒𝑒𝑟𝑟�1−��𝑆𝑆𝑗𝑗𝑗𝑗+ 𝑆𝑆′𝑡𝑡� 𝑘𝑘𝑗𝑗� �� − 1}                                     (5), 

where r is intrinsic growth rate and kj is the carrying capacity of spawning ground j. 
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Model analysis 

First, we modeled species with three levels of straying distance (D = near, medium, or far in 

Table 1 and Fig. 2), crossed with three levels of homing rate (h = 50, 80, or 90% in Table 1) to 

represent a variety of life history combinations. While many wild salmonid populations show 

homing rates around 80% (e.g., chum O. keta and pink salmon) to 90% or more (e.g., Coho O. 

kisutch and Atlantic salmon) and tend to stray to habitats close to their natal streams (Pess et al., 

2014), hatchery-origin individuals may have significantly lower homing rates and longer 

straying distances (Ford et al., 2015; Keefer and Caudill, 2014). The estimated homing rate for 

non-salmonids varies from relatively high in American shad (Alosa sapidissima, Pess et al., 

2014) and lake sturgeon (Acipenser fulvescens, Homola et al., 2012) to relatively low in 

muskellunge (Esox masquinongy, Crossman, 1990) and mpasa (Opsaridium microlepis, 

Sungani et al., 2016). However, for most non-salmonid species, there is a lack of direct 

estimation and systematic review of homing rates. Thus, we used a 50% homing rate to represent 

a life history between two end points (0% and 100% homing rate). Straying distance “near” 

means that straying individuals in each subpopulation can migrate to one of the two nearest 

spawning/nursery grounds (n = 2 in Table 1; dark gray circles in Fig. 2a), “medium” means 

migration to the neighboring four (n = 4 in Table 1; dark gray circles in Fig. 2b), and “far” 

means migration to the neighboring six spawning/nursery grounds (n = 6 in Table 1; dark gray 

circles in Fig. 2c). Then, two extreme cases were simulated, in which only one type of straying 

distance was used for each of these two cases: (1) a species that has the ability to explore all 

spawning/nursery grounds in the system with zero homing behavior (h = 0% and D = full in 

Table 1; i.e., the number of adults migrating to each spawning ground simply is based on the 

carrying capacity in each spawning ground), similar to sea lamprey (Bergstedt and Seelye, 1995; 

Waldman et al., 2008) and northern pike (Esox lucius, Oele et al., 2015), and (2) species with 
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100% homing rate (h = 100% and D = none in Table 1) that represents a species with an 

extremely low straying rate, such as sockeye salmon (O. nerka, Pess et al. 2014). In total, the 

population dynamics of 11 virtual species were simulated (three levels of straying distance × 

three levels of homing rate + two extreme cases). 

 

Because our main goal was to examine the response of a migratory population to barrier 

removal/construction based on the differences in homing rates and straying distances, other 

parameters such as the annual survival rate, intrinsic growth rate, carrying capacity for each 

spawning/nursery ground before barrier removal/construction, and the starting population 

abundance were set to be the same for all subpopulations (Table 1).  

 

To simulate the long- and short-term effect of barrier removal/construction on population 

dynamics, we varied the carrying capacity in one of the spawning/nursery grounds (k = 250, 

2250, 3250, or 4250) while the carrying capacity in other spawning/nursery grounds remained 

the same (k = 1250). Then we ran the population model for 100 years and compared the short- 

and long-term responses. Short-term response in this study was defined as the percent change 

in population abundance in the first 20 years (around five generations for a species that matures 

at four years, hereafter, short-term abundance change rate), and long-term response was the 

average abundance in the last five years of simulation (i.e., years 96 – 100, hereafter, equilibrium 

abundance). A low number was used as the initial abundance for each subpopulation (N0 = 10) 

because we wanted to examine the short-term response without the interference of 

overcompensatory fluctuation introduced by the Ricker function when the population 

abundance approaches carrying capacity (Barraquand et al. 2014). We examined responses of 

(1) the subpopulation that primarily used the reduced or enlarged spawning/nursery ground, and 
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was thus, directly affected by barrier construction or removal (hereafter, target subpopulation), 

(2) the overall population (the sum of all subpopulations in the system), and (3) the spatial 

pattern of all subpopulations. For species with no homing behaviour, only the responses of the 

overall population were examined because there is no subpopulation structure for this type of 

life history. We plotted standardized values as percentage changes in the scenario of interest, 

relative to the value for the status quo scenario (i.e., when the carrying capacity in every 

spawning/nursery ground is the same, k = 1250 as in Table 1), to examine the difference among 

subpopulations because we were more interested in relative changes than absolute values. 

 

We varied the post-spawning survivorship to simulate iteroparous (sa = 1) and semelparous (sa 

= 0) species. While reducing post-spawning survivorship decreased both the short-term 

abundance change rate (percent change in population abundance in the first 20 years) and 

equilibrium abundance (average abundance in years 96 – 100), similar spatio-temporal patterns 

were found for both reproductive modes (Figs. 5 – 10 in Appendix). Therefore, we only show 

the results for iteroparous species here. In addition to post-spawning survivorship, we varied the 

value of other parameters to compare the results. In general, increasing intrinsic growth rate r 

resulted in a faster short-term abundance change rate and a greater equilibrium abundance (but 

also increased the annual variation through the Ricker stock-recruitment function). Reducing 

the age of maturity increased the short-term population abundance change rate, while the 

equilibrium abundance remained at similar values. However, changing these parameters did not 
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influence the spatial dynamic patterns and relative values among species and subpopulations 

(Appendix). All simulations and graphs were performed in R (R Core Team 2017). 

 

Results 

The dynamics of the target subpopulation 

For the target subpopulation, both short-term abundance change rate (percent change in 

population abundance in the first 20 years) and equilibrium abundance increased with increases 

in carrying capacity in the spawning/nursery ground, but the patterns among species were 

different (Figs. 3, 4; the results of 80% homing rate can be found in Appendix Figs. 1, 2). The 

short-term abundance change rate of species with lower homing rates and medium to far straying 

distances were more sensitive to changes in carrying capacity (Figs. 3a, 4a, 4b). For short-term 

abundance change rate, species with 50% homing rate and medium straying distance exhibited 

the greatest rate of change with changing carrying capacity (Figs. 3a, 4a, 4b). In all other 

instances, as straying distance and homing rate increased, the percent change in population 

abundance at year 20 declined. (Fig. 3b, 4a, 4b). In contrast, species that all migrated to their 

natal origin (h = 100%, D = None) reached the greatest equilibrium abundance when carrying 

capacity increased, followed by species with 90% and 80% homing rate (Figs. 3d, 4d). The 

smallest change was found in species with 50% homing rate and short straying distance (Fig. 

3c). In general, we found that as straying distance increased, short-term and equilibrium 

abundances of the target subpopulation increased, but that species with greater homing rates 

experienced slower initial subpopulation growth, but larger equilibrium abundances. 
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The dynamics of the overall population 

For most species, the short-term abundance change rate and equilibrium abundance increased 

with increased carrying capacity in the target spawning/nursery ground (Figs. 5, 6). The species 

with zero homing behavior and the ability to explore every spawning ground in the system 

showed the highest values in short-term abundance change rate and equilibrium abundance at 

all levels of carrying capacity (Figs. 5a, 5c, 6). For the short-term abundance change rate, higher 

values were observed in species with medium straying distance, closely followed by species 

with near straying distance, and species with far straying distance (Figs. 5a, 5b, 6a, 6b). In 

contrast, species with higher homing rates (100% and 90%) showed higher equilibrium 

abundance than species with lower homing rates (80% and 50%, Figs. 5c, 5d, 6c, 6d). 

 

The spatial pattern of non-target subpopulations 

Among all non-target subpopulations, the short-term abundance change rate (percent change in 

population abundance in the first 20 years) only showed positive correlation with changes in the 

carrying capacity in the target spawning/nursery ground for subpopulations that were located 

closer to the target subpopulation (Figs. 7, 8, and Appendix Fig. 3). The two subpopulations 

immediately adjacent to the target subpopulation increased for species with a short straying 

distance and all levels of homing, as well as species with medium straying distance and a 50% 

homing rate (Figs. 7a, 7b). The species with medium straying distance and 50% homing rate 

also showed positive correlation with carrying capacity in the next two subpopulations 

(Appendix Figs. 3a, b). Declining short-term abundance change rate with increasing carrying 

capacity was found for subpopulations farthest from the target subpopulation, while the level of 

change varied with homing rate and straying distance (Figs. 8a, 8b). Species with 100% homing 

rate (straying distance: none) showed no change in other subpopulations because there was no 
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interaction between the target and non-target subpopulations (Figs. 8b, d and Appendix Figs. 

3c, f). 

 

The correlation between the equilibrium abundance in each non-target subpopulation and the 

carrying capacity in the spawning/nursery ground of the target subpopulation also varied with 

the relative location among subpopulations (Figs. 7, 8, and Appendix Fig. 4). For subpopulations 

that were closest to the target subpopulation, increasing abundances were observed for all 

species when carrying capacity increased (Figs. 7c, 7d). On the contrary, the equilibrium 

abundance in the farthest subpopulation of all species showed negative correlations with 

carrying capacity (Figs. 8c, 8d). For the other subpopulations, the correlation between 

equilibrium abundance and carrying capacity varied with homing rate and straying distance 

(Appendix Fig. 4). In general, the straying distance of a species could determine the correlation 

between each subpopulation and the target subpopulation and homing rate influenced the level 

of changes. The number of non-target subpopulations that were positively correlated with the 

target subpopulation increased with the straying distance of a species. For species with higher 

homing rates, the differences in the equilibrium abundance among non-target subpopulations 

were lesser than the species with lower homing rates. 

 

Discussion 

Our study provides a quantitative method to assess the effect of barrier removal or construction 

on migratory fish populations, which is comparable to the conceptual model and discussions in 

Pess et al. (2014). Specifically, our results revealed the population dynamics of species with 

different life history combinations when one subpopulation experienced a decrease or increase 

in the size of available spawning/nursery habitat. This model could be used to inform 
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management planning and monitoring projects that include barrier construction or removal to 

control or restore fish populations.  

 

Implications for management 

A careful consideration of the different responses among species of interest (native and invasive) 

under a particular management action is crucial for multi-species management. Our results 

suggest that species with lower homing rates might respond to changes in the amount of 

available spawning/nursery habitat faster than species with higher homing fidelity at both global 

(Figs. 5, 6) and local scales (Figs. 3, 4). The effect of barrier removal on species/populations 

that lack homing behavior (e.g., sea lamprey and northern pike) could outweigh the benefit of 

restoring species/populations with strict natal homing (Jensen and Jones 2017). For species with 

a high homing rate and short straying distance, such as American shad and Coho salmon, 

reintroduction may be required to accelerate the pace of restoration of the local subpopulation 

(Figs. 3b, 4b, and Pess et al. 2014). The rate of change in short-term population abundance could 

be validated by empirical monitoring data. For example, the changes in fish communities have 

been studied by Hogg et al. (2015) and Poulos et al. (2014) for 2 and 3 years, respectively, after 

the dam was removed. However, these responses might be influenced by other temporal factors, 

such as the temporary habitat disruption, water temperature change, sedimentation, and 

contamination during and after dam removal (Foley et al. 2017a). Therefore, it is crucial to apply 

long-term monitoring to assess the response of fish populations until the habitats stabilize 

(Brewitt 2016; Foley et al. 2017a, 2017b; McHenry and Pess 2008). 

 

While we acknowledge the importance of collecting long-term monitoring data, our model 

could be used to predict some possible trajectories of populations with different life history traits. 
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In general, our results indicated that species with higher homing rates might maintain a higher 

abundance than species with a higher percentage of straying adults in the long run (Figs. 3d, 4d. 

5d. 6d). Interestingly, species with either no homing behavior or complete homing behavior 

could also reach a high population abundance (Figs. 5c, 5d, 6c, 6d). Species that either home 

completely to their natal habitat or that explore all spawning grounds in the system likely are 

able to occupy the newly-opened spawning/nursery habitat at a level closer to the new carrying 

capacity, relative to species with many straying individuals. For salmonids, a higher homing 

rate might be a better strategy for species that spawn in rivers with stable environmental 

conditions among years (Pess et al. 2014). However, long-term fish abundance data from 

systems in which a barrier has been removed will be needed to confirm this phenomenon.  

 

Besides the temporal scales, simulations showed different responses between the target 

subpopulation and the overall population, especially for species that have the ability to use 

distant spawning/nursery grounds. While most studies focus on the response of the local 

subpopulation to barrier removal (exceptions: Jensen and Jones 2017; Zheng and Hobbs 2013), 

the strength of connection among spatially separate subpopulations, such as the propensity of 

adults to stray, could influence how the overall population responds to a local environmental 

change. Two main differences were identified in our simulations. First, for species that can 

move to distant spawning grounds, the short-term population abundance change was relatively 

fast at a local scale but could be slower than status quo at the global scale (e.g., straying distance 

“Far” in Figs. 3 and 4 versus in 5 and 6). Second, while straying distance and homing rate 

influenced the sensitivity of target subpopulation response to changes in carrying capacity (e.g., 

the subpopulation that increased the most with increasing carrying capacity decreased the most 

with reduced carrying capacity, and vice versa), the relative values of short-term percent change 

in population abundance and equilibrium abundances were similar among overall populations 
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(e.g., species with higher short-term abundance change rate or equilibrium abundance remained 

higher among all species regardless of increasing or decreasing carrying capacity, and vice 

versa). Species-specific modelling and monitoring projects are recommended to further 

elucidate these differences because the response of the overall population (rather than the 

dynamic of a local subpopulation) is crucial for controlling invasive species and conserving 

threatened species (Jensen and Jones 2017; Zheng and Hobbs 2013). 

 

Studies have been conducted to understand the response of target subpopulations, and the 

connections among subpopulations, to the removal of barriers (Pess et al. 2014; Schick and 

Lindley 2007). For example, the proportion of straying adults and the distance from source 

subpopulations can influence the rate of recolonization in a newly opened habitat (Pess et al. 

2012; Schtickzelle and Quinn 2007). However, the dynamics of other subpopulations that are 

not directly affected by barriers receive less attention (exception see Schick and Lindley 2007). 

In our study, lower (than status quo) short-term population abundance change rate and long-

term equilibrium abundances were predicted, especially in subpopulations beyond the straying 

range of the target subpopulation (Fig. 8, Appendix Figs. 3, 4), regardless of the expected benefit 

to the target subpopulation and overall population. Our results suggested that the spillover effect 

(i.e., more straying adults move from the target subpopulation to other subpopulations after 

barrier removal) might be limited by the straying range of the species. Overall, there might be 

more fish straying from non-target subpopulations towards the target subpopulation in searching 

for larger spawning/nursery grounds in a closed system. While we call for more monitoring and 

modelling research on the dynamics of non-target subpopulation, this effect should be taken into 

consideration if every subpopulation is managed by different management authorities. 

 

Model generalizations and assumptions 
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Because our main goal was to assess the influence of homing rates, straying distances, and 

reproductive modes on population dynamics, we simplified the model by assuming all other life 

history and habitat related parameters were the same. While these assumptions helped us 

identify the influence of several key life history traits, it is well-recognized that there are 

correlations and trade-offs in life history traits. For example, species with lower homing rates 

may be less specialized for riverine spawning/nursery habitats and have low variation in age of 

maturity (e.g., pink salmon), while species with higher homing rates are more specialized for 

spawning grounds and have larger variation in age at maturity (e.g., Chinook salmon; Pess et al. 

2014). Furthermore, populations residing in different environments may exhibit different life 

history traits due to local adaptation. Higher rates of iteroparity, serial spawning and batch 

fecundity are found in northern populations of American shad (Pess et al. 2014). While sea 

lamprey has a low tendency to colonize new habitats in their native range (Pess et al. 2014), 

invasive populations in the Laurentian Great Lakes appear to lack homing behaviour and are 

able to quickly occupy new habitats in the system (Jensen and Jones 2017). The potential for 

among-population differences in life history traits emphasizes the need to obtain species- or 

population-specific parameter estimates when applying this model to a particular system. 

 

We assumed that the proportion of straying adults moving to adjent spawning grounds within a 

given straying range was simply based on the carrying capacity in those spawning grounds. 

However, if the spatial scale of the system is relatively large and/or the swimming ability of the 

species is poor, using dispersal kernels to incorporate the gradual effect of distance such as 

travel cost, may be more reasonable. Intermediate/mixed patterns between results with different 

straying distances (between near and medium or medium and far) might be observed under this 

situation. While in general, most salmonids stray to habitats close to their natal stream, the 

relation with straying distance among populations is largely unknown, especially for wild 
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populations (Schtickzelle and Quinn 2007). In this study, a fixed homing rate was applied for 

each species through time, however, the straying rate might vary when population abundance 

changes if density-dependent dispersal occurrs (Haugen et al. 2007; Pess et al. 2012). However, 

density-dependent dispersal is rarely studied in fish (Amarasekare 2004) and its influence on 

the homing tendency of migratory fish is seldom addressed. 

 

The spatial structure among subpopulations is more complex in the real world than the circular 

structure we modelled. While our model could be used as a case study for a lake-stream system, 

other model structures may be more suitable for other systems, where some subpopulations have 

more connections and some are more isolated. For example, a linear structure could be used to 

represent the north-south latitudinal distribution of American shad along the coast. In contrast, 

network structures are more similar to the subpopulations of pink salmon in Alaska or Chinook 

salmon in California watersheds. Nevertheless, the simple structure of this model is flexible and 

could be modified to simulate other types of systems. Finally, the differences in the carrying 

capacity and asynchronous stochastic variation of each spawning and nursery ground in the real 

world might weaken the spatial patterns observed in this study. 

 

Future perspective and conclusions 

For managing migratory species, it is critical to consider the interaction among local 

subpopulations, such as straying and metapopulation dynamics, because it could attenuate the 

link between local abundance and local demographic characteristics (Schtickzelle and Quinn 

2007). The differences between spatial (local and global) and temporal (short-term abundance 

change rate and equlibrium abundance) scales found in this study highlight the need for 

monitoring projects that have a broader scope beyond the scale of most existing studies (as 
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discussed in Brewitt 2016; Foley et al. 2017a, 2017b; McHenry and Pess 2008). In addition, 

further studies on species (or populations) and system-specific parameters (e.g., homing rate, 

straying distance, post-spawning mortality, stock-recruitment relationship, fishing mortality, 

subpopulation structure, etc.) are required to improve the accuracy of the model and make it 

more suitable for other species (native and invasive) or systems of interest. The comparison 

among multiple species might become more important as management and restoration plans 

move from targeting a single species/subpopulation to multiple species/subpopulations 

(Hermoso et al. 2015; McKay et al. 2016).  

 

In conclusion, this study demonstrates a way to examine possible population dynamics for 

migratory species after barrier removal/construction. Our model could be used to assess both 

short-term and long-term responses of local subpopulations or the overall population, but the 

results should be compared with monitoring data when available. The results suggested different 

responses of local subpopulations and the overall population after a change in local carrying 

capacity. Interestingly, for subpopulations within the same system but beyond the straying 

distance of the target subpopulation, a lower increase rate and equilibrium abundance might be 

observed. This information could be critical for prioritizing barrier removal or construction 

projects when managing multiple species.  
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Tables: 

Table 1. Parameter values used in the model.  

Parameter Value/level Description 

N0 10 Subpopulation abundance at time 0 

sb 0.9 Annual survival rate before spawning 

sa 1 (iteroparity), 0 
(semelparity) 

Annual survival rate after spawning 

r 0.5 (iteroparity) Intrinsic growth rate 

k 1250 The carrying capacity of each spawning/nursery 
ground before barrier removal/construction 

lag 4 Age of maturity. We used age 4 to represent a variety 
of migratory fish species (e.g., salmonids, trouts, 
walleye, suckers, redhorse, pikes, bass, and 
lampreys). 

h 0, 50, 80, 90, 100% Percentage of homing adults (homing rate)*. 0% is 
comparable to sea lampreys and northern pike; 80% 
for chum and pink salmon; 90% for Chinook (O. 
tshawytscha), Coho, and Atlantic salmon; 100% for 
sockeye salmon  

D none, near, medium, 
far, full 

Straying distance. None: all individuals migrated 
back to their natal origins; near: straying individuals 
were able to migrate to one of the two nearest 
spawning/nursery grounds; medium: to one of the 
four nearest spawning/nursery grounds; far: to one of 
the six nearest spawning/nursery grounds; full: to any 
of the spawning/nursery grounds in the system. 

n 0, 2, 4, 6 Number of subpopulations within a given straying 
distance range. n = 0 when D is none, 2 when D is 
near, 4 when D is medium, and 6 when D is far. 
Species with straying distance full and 0% homing 
rate was treated as a single population in the system 
with no subpopulation structure. 

* Waldman et al. 2008; Pess et al. 2014; Oele et al. 2015  
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Figures: 

Fig. 1 The spatial structure of the population model used in this study, which represents a lake-

stream system: adult fish use the same water body to feed but migrate to eight separate 

watersheds to spawn. (b) is the detailed movement between the feeding ground and 

spawning/nursery ground of a single subpopulation (dotted box in (a)) 

 

Fig. 2 Straying distance (a) near, (b) medium, and (c) far for subpopulation j 

 

Fig. 3 The percent change in abundance at year 20 relative to status quo (a, b) and equilibrium 

abundance (c, d) of the target subpopulation (j) when carrying capacity was reduced (-1000 on 

the x axis, barrier construction) or increased (1000 – 3000, barrier removal) in the corresponding 

spawning/nursery ground. Three levels of straying distance (Far, Medium, Near) were assigned 

to species with partial homing behavior (50% and 90%) while species with 100% homing rate 

did not stray (straying distance = None). The horizontal and vertical dotted lines represent status 

quo (the carrying capacity in every spawning/nursery ground is the same, k = 1250 as in Table 

1). 

 

Fig. 4 The percent change in abundance at year 20 relative to status quo (a, b) and equilibrium 

abundance (c, d) of the target subpopulation (j) when carrying capacity was reduced (-1000: a, 

c) or increased (1000: b, d) in the corresponding spawning/nursery ground. The size of dots 

represents the relative value within each panel (i.e., larger dots mean higher values) and the 

color indicates whether the value is larger (black) or smaller (grey) than status quo (0%). 

Numbers within each panel correspond to the largest and smallest values. 
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Fig. 5 The percent change in abundance at year 20 relative to status quo (a, b) and equilibrium 

abundance (c, d) of the overall population when carrying capacity was reduced (-1000 on the x 

axis, barrier construction) or increased (1000 – 3000, barrier removal) in the target 

spawning/nursery ground. Three levels of straying distance (Far, Medium, Near) were assigned 

to species with partial homing behavior (50% and 90%) while species with 100% homing rate 

did not stray (straying distance = None) and species without homing behavior could explore all 

spawning grounds in the system (straying distance = Full). The horizontal and vertical dotted 

lines represent status quo (the carrying capacity in every spawning/nursery ground is the same, 

k = 1250 as in Table 1). 

 

Fig. 6 The percent change in abundance at year 20 relative to status quo (a, b) and equilibrium 

abundance (c, d) of the overall population when carrying capacity was reduced (-1000: a, c) or 

increased (1000: b, d) in the target spawning/nursery ground. The size of dots represents the 

relative value within each panel (i.e., larger dots mean higher values) and the color indicates 

whether the value is larger (black) or smaller (grey) than status quo (0%). Numbers within each 

panel correspond to the largest and smallest values. 

 

Fig. 7 The percent change in abundance at year 20 relative to status quo (a, b) and equilibrium 

abundance (c, d) of the two subpopulations that were immediately adjacent to the target 

subpopulation when carrying capacity was reduced (-1000 on the x axis, barrier construction) 

or increased (1000 – 3000, barrier removal) in the target spawning/nursery ground. Three levels 

of straying distance (Far, Medium, Near) were assigned to species with partial homing behavior 

(50% and 90%) while only one level straying distance (None) was assigned to species with 

100% homing rate. The horizontal and vertical dotted lines represent status quo (the carrying 

capacity in every spawning/nursery ground is the same, k = 1250 as in Table 1). The eight boxes 
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on the top of figures (b) indicate the spatial location of these subpopulations (dark grey boxes) 

and target subpopulation (T). 

 

Fig. 8 The percent change in abundance at year 20 relative to status quo (a, b) and equilibrium 

abundance (c, d) of the subpopulation that is the farthest from the target subpopulation when 

carrying capacity was reduced (-1000 on the x axis, barrier construction) or increased (1000 – 

3000, barrier removal) in the target spawning/nursery ground. Three levels of straying distance 

(Far, Medium, Near) were assigned to species with partial homing behavior (50% and 90%) 

while only one level straying distance (None) was assigned to species with 100% homing rate. 

The horizontal and vertical dotted lines represent status quo (the carrying capacity in every 

spawning/nursery ground is the same, k = 1250 as in Table 1). The eight boxes on the top of 

figures (b) indicate the spatial location of this subpopulation (dark grey box) and target 

subpopulation (T). 
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